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Modulating the frequency of a harmonic oscillator at nearly twice its natural frequency leads to
amplification and self-oscillation. Above the oscillation threshold and in the presence of a nonlinearity, the
field settles into a coherent oscillating state with a well-defined phase of either 0 or π. We demonstrate a
quantum parametric oscillator operating at microwave frequencies and drive it into oscillating states
containing only a few photons. The small number of photons present in the system and the coherent nature
of the nonlinearity prevent the environment from learning the randomly chosen phase of the oscillator. This
result allows the system to oscillate briefly in a quantum superposition of both phases at once, effectively
generating a nonclassical Schrödinger’s cat state. We characterize the dynamics and states of the system by
analyzing the output field emitted by the oscillator and implementing quantum state tomography suited for
nonlinear resonators. By demonstrating a quantum parametric oscillator and the requisite techniques for
characterizing its quantum state, we set the groundwork for new schemes of quantum and classical
information processing and extend the reach of these ubiquitous devices deep into the quantum regime.
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I. INTRODUCTION

Parametric amplifiers and oscillators are quintessential
devices used to amplify small electromagnetic signals
[1–3], convert radiation from one frequency to another
[4,5], create squeezed light and entangled photons [6,7],
and realize new information processing architectures
[8–12]. They operate by modulating a parameter, the
natural frequency of the resonant circuit ωc, at approx-
imately twice its frequency ωp ≈ 2ωc (Fig. 1). The modu-
lation amplifies one of the field quadratures at the
half-harmonic frequency ωp=2. A sufficiently large ampli-
fication overtakes the detuning and decay present in the
system and leads to an exponential increase in the half-
harmonic cavity field amplitude. Nonlinearities clamp this
exponential growth and cause the system to enter an
oscillating steady state (Fig. 1). These nonlinearities can
be dissipative or dispersive. An example of the latter is the
Kerr nonlinearity that induces a change in the cavity
frequency proportional to the intracavity field intensity

or photon number. Furthermore, the self-oscillation ampli-
tude scales inversely with the magnitude of the non-
linearity. Nonlinearities have been exceedingly small in
parametric oscillators to date, leading to large oscillation
amplitudes that result in rapid decay of quantum coherence
and the appearance of classical dynamics [13]. The
quantum regime of nonlinear parametric oscillators has
been extensively studied in theory [14–16] but has received
only limited attention in experiments [17].
We experimentally realize a quantum Kerr parametric

oscillator (KPO) by implementing an on-chip supercon-
ducting nonlinear resonator and investigate its quantum
dynamics under parametric driving. In contrast to previ-
ously demonstrated optical and microwave parametric
oscillators, our device operates in the quantum regime
with a self-oscillating steady state containing only a few
photons. Unlike in the classical KPO, the onset of self-
oscillation in the quantum system is not a sharp transition.
A reasonable criterion to define self-oscillation in this case
is by the narrowing of the KPO’s spectrum to well below
the linewidth of the resonator. In this regime, reached for
a sufficiently strong drive, the KPO also shows other
properties typically associated with self-oscillating sys-
tems: Relative amplitude and phase fluctuations become
small and correlated over a long time.
The resonator is implemented as an LC circuit with an

array of Josephson junctions in place of the inductor [18].
The nonlinear inductance of this array induces a Kerr
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interaction −ðχ=2Þâ†â†â â, where â is the annihilation
operator of the resonator and χ=2π ¼ 17.3 MHz is the
resonator frequency shift per photon [Fig. 2(a)]. The
linewidth of the resonator is κ=2π ≈ 1.1 MHz, which
means that we are well within the single-photon Kerr
regime [19] with χ=κ ≈ 17. The resonator frequency ωc=2π
can be tuned down from 8 GHz to below 4 GHz by an on-
chip flux line, and most of the measurements are done with
the resonator in the 6–8-GHz frequency range. This
tunability also enables parametric driving of the form
β̃ðtÞðâþ â†Þ2, where β̃ðtÞ is proportional to the voltage
VðtÞ applied to the flux line. Additionally, the flux line has
a weak capacitive coupling to the resonator, which allows
us to also use it for coherent displacement of the resonator
state by resonant driving.
With parametric driving β̃ðtÞ ¼ 2βðtÞ cosωpt at fre-

quency ωp ¼ 2ðωc − ΔÞ, which is slightly detuned from
the parametric resonance 2ωc, the dynamics of the reso-
nator in a rotating frame at half the driving frequency is
well described by the Hamiltonian

Ĥ=ℏ ¼ Δâ†â −
χ

2
â†â†â âþβðtÞðâ2 þ â†2Þ; ð1Þ

where βðtÞ is the slowly varying amplitude of the para-
metric driving.

II. EXPERIMENTAL RESULTS

A. Parameters of the resonator and its steady state
under parametric driving

We first characterize the energy-level structure of the
Kerr nonlinear resonator without parametric driving
(β ¼ 0). To do this, we prepare the resonator in an excited
state ρ̂0 and let it relax back to the vacuum state while we
collect the emitted microwave signal. The power spectral
density (PSD) of this signal, which we call “transient PSD”
to distinguish it from the PSD measured at a steady state,
contains multiple peaks evenly spaced by χ [Fig. 2(b)]
due to the nonlinear energy-level structure. The nth peak
captures photons at frequency ωc − ðn − 1Þχ, emitted dur-
ing relaxation from jni to jn − 1i. We measure the transient
PSDs for coherent states ρ̂0 ¼ jαihαj, which we prepare by
driving the system resonantly at ωc with 1-ns pulses of
different amplitudes. Since the pulses are much shorter than
1=χ, they simply displace the state of the resonator from
vacuum into a coherent state jαi, with α proportional to the
pulse amplitude. In agreement with theory, the number of
peaks we observe in the spectrum grows with α as higher
Fock states are populated [Fig. 2(b)].
The transient PSD measurement provides a way to infer

the Fock occupations pn ¼ hnjρ̂0jni of the initial state ρ̂0.
The probability that a transition from jni to jn − 1i occurs
during free relaxation to j0i is exactly equal to the total
population of all Fock states jni and higher. When the

peaks are resolved (χ ≫ κ), the total power in the nth peak
is proportional to

P∞
k¼n pk (see Appendix D). The mea-

sured signal is related to the field emitted from the resonator
by a frequency-dependent gain factor. The calibrated gain
allows us to calculate the Fock occupations fpng in the
initial state from the transient PSD.
The quantum parametric oscillator does not have a sharp

self-oscillation threshold. To study the transition to self-
oscillation, we modulate the flux line with a continuous
wave at a fixed frequency ωp ¼ 2ðωc − ΔÞ and measure
the mean photon number [Fig. 2(c)] as well as the steady-
state PSD [Fig. 2(d)] for increasing parametric drive
amplitudes β. Somewhat counterintuitively, the parametric
excitation of a quantum KPO is not the most efficient
at Δ ¼ 0. Simulations show that detunings close to
χ=2; 3χ=2; 5χ=2;… result in larger mean photon numbers.
We therefore choose to study the off-resonant regime.
The mean photon number hn̂i [Fig. 2(c)] is obtained by

turning the drive off and measuring the transient PSDs as
the state relaxes. At large β, both the classical and the
quantum model predict photon numbers very close to the
measured results. For smaller β, the measurements show a
gradual transition into self-oscillation, smoothed by
quantum fluctuations. This behavior deviates from the
classical prediction but is reproduced well by the quan-
tum model.
The steady-state PSD [Fig. 2(d)] spectrum reduces to

two peaks spaced by 2Δ in the weak drive limit and can be
understood as the result of a two-photon emission
process, with one photon emitted at the cavity frequency
ωc ¼ ωp=2þ Δ and the other, by energy conservation, at
ωp=2 − Δ [Fig. 2(e)]. For large drive amplitude β, the
resonator enters the self-oscillation regime and is phase-
locked to the external parametric drive leading to the
narrow peak seen in Fig. 2(d). The width of this peak is
determined by the timescale of the fluctuations in the
phase of the resonator state. The main cause of these
fluctuations is switching between the two classically
stable phases 0 and π, which is suppressed exponentially
with increasing size of the state.
Characterizing the full quantum state of the parametric

oscillator is challenging and calls for a distinct approach to
quantum tomography. There are several methods based on
measuring Fock-state populations or parities of displaced
states. These approaches were developed for qubit-
resonator systems [19–22] or qubits with tunable coupling
to the environment [23] and require more complicated
devices with auxiliary cavities and control parameters.
Other methods have been developed in quantum optics
based on studying the statistics of the output field âout of
linear resonators [24–26], where âout is linearly related to
the resonator field âðt ¼ 0Þ at some initial time. These
methods are not suitable for our system since χ ≫ κ leads
to a highly nonlinear relationship between the output field
and the intracavity mode.
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B. State tomography

We develop a state tomography method suited for the
quantum parametric oscillator that does not need any
auxiliary systems. Our method is based on measuring
the transient PSD using a purely linear detection of the
output field. The transient PSD measurement provides us
with the diagonal elements of ρ̂. By displacing the state in
phase space and detecting the transient PSD, we find the
diagonal elements of a displaced density matrix D̂ ρ̂ D̂† that
contain information about the off-diagonal elements of ρ̂.
Repeating this for several different displacements, we
obtain enough information to estimate the full density
matrix by a maximum likelihood method. This aspect of the
tomography method is conceptually similar to an existing
technique using generalizedQ functions [19,27]. We arrive
at the estimate of ρ̂ by minimizing a loss function Lðρ̂estÞ,
which quantifies the difference between the measured PSD
and the PSD simulated for the state ρ̂est (see Appendix E).
This convex optimization problem can be solved efficiently
by semidefinite programming. The broadening of the
higher Fock-state peaks due to their shorter lifetime limits
the maximum size of an unknown state that we can
reconstruct. Additionally, we have observed systematic
errors that become more severe for larger measured states.
We suspect this result to be due to excitation of unwanted
off-resonant transitions by strong drive pulses and other
nonlinear effects.
We use this tomography procedure to study the free

dynamics of the system, which we visualize by plotting
the Wigner function calculated from the reconstructed
density matrix. After displacing the resonator from vac-
uum to a coherent state, we let the system evolve freely for
a time τ before performing the tomography [Fig. 3(a)].
Here, as well as in the rest of the paper, the displacements
used in the tomography procedure are arranged in con-
centric rings as illustrated in Fig. 3(b). Figure 3(c) shows
an example of a raw tomography data set, consisting of the
transient PSDs for all displacements. We reconstruct the
state at different time slices τ and observe the evolution of
the Wigner distributions due to the Kerr nonlinearity
[Fig. 3(d)]. In agreement with simulations, this evolution
involves a “shearing” distortion, which has a classical
counterpart explained by the amplitude dependence of
the resonator frequency, and also exhibits negative
Wigner function values, a signature of quantum mechani-
cal behavior [19].

C. Transient dynamics and adiabatic
cat-state generation

The system can behave nonclassically under a parametric
drive but only before photons leaking out of the oscillator
cause the loss of quantum coherence. In our system,
quantum dynamics persists in this transient regime for a
sufficiently long time to allow detailed observation. This

nonclassical evolution is important to understand in the
context of emerging applications for parametric oscillators
in quantum information processing [10,11]. To investigate
the transient dynamics, we turn on the parametric drive
suddenly and measure the time evolution of the mean
photon number for three different drive amplitudes:
β=2π ¼ 3.5, 5.8, and 11.5 MHz [Fig. 4(a)]. The observed
time dependence of the mean photon number is in good
agreement with a theory fit to all three data sets simulta-
neously, using only the detuning Δ, the loss rate κ, and a
drive conversion factor β=V as free fit parameters. Using
the previously described tomography procedure, we also
reconstruct the quantum state for β=2π ¼ 5.8 MHz at
t ¼ 20 ns (transient state) and t ¼ 2000 ns (steady state)
[Fig. 4(b)]. Comparison between the theoretically predicted
and experimentally obtained Wigner functions shows
relatively good agreement with fidelities of 0.93 and
0.94 for the transient and steady states, respectively. We
attribute the discrepancies to systematic errors in the
tomography process, which we believe could be mitigated
by improving its calibration. The only fit parameters in
the theoretical prediction are the overall rotation angle
and a short delay (td ¼ 2.5 ns) between the end of the
parametric drive pulse and the start of the tomography
(see Appendix F).
These results demonstrate that the state of the

oscillator can be engineered by designing the parametric
drive βðtÞ. For example, by adiabatically changing βðtÞ,
we can prepare even-parity energy eigenstates of the
Hamiltonian for different values of β as long as losses
are negligible [16]. Intriguingly, for Δ < 0, as β approaches

Quantum

or

Classical

FIG. 1. Schematic of a parametric oscillator above the insta-
bility threshold. An LC circuit with a harmonically modulated
inductance is an example of a parametric oscillator. Above
threshold, the system is oscillating at half the driving frequency
ωp=2, which can be described as a parametric down-conversion
process. The phase of the oscillator with respect to the external
driving can be 0 or π. Classically, this symmetry is broken, and
one of the two cases is realized at random. Quantum mechan-
ically, the oscillator can be in a superposition of both states.
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and exceeds χ, the energy eigenstate adiabatically con-
nected to the vacuum state begins to closely approximate
the even-parity Schrödinger’s cat state. We set the pump
detuning in the experiment to Δ=2π ¼ −6.7 MHz and

begin with the resonator in the vacuum state with β ¼ 0.
We increase β slowly so the system follows the eigenstate
of the Hamiltonian. Numerical simulations suggest that,
given our system’s parameters,
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FIG. 2. (a) Energy-level diagram for the Kerr nonlinear resonator with each additional photon reducing the transition frequency by χ.
(b) Transient PSD measurements for coherent states with different amplitudes α. The curve plotted on the right is the PSD corresponding
to α indicated by the white dashed line. (c) Mean photon number hn̂i at a steady state versus the amplitude of the parametric driving at
Δ=2π ¼ 25.3 MHz. The quantum prediction (solid line) agrees well with the experimental data. The classical model predicts two
thresholds and hysteretic behavior (dashed line), corresponding to transitions between the monostable, tristable, and bistable regimes of
the KPO [15]. (d) Steady-state PSD (logarithmic scale) for different driving amplitudes atΔ=2π ¼ 11.2 MHz. The spectrum goes from a
double-peaked shape at small β to a single narrow peak in the self-oscillation regime, passing through a multipeaked spectrum at
intermediate values of β. The white dot indicates the approximate onset of self-oscillation. The spacing between the two peaks in the
weak drive limit is 2Δ, as explained by the two-photon emission process shown in diagram (e).
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βðtÞ ¼ βmaxsin2
πt

2tmax
; 0 ≤ t ≤ tmax; ð2Þ

with tmax ¼ 22 ns [Fig. 4(c)] is a reasonable parametric
driving profile for preparing a cat state. The length of
this signal is much shorter than the cavity decay time
1=κ ≈ 150 ns but long enough to ensure approximately
adiabatic evolution. We perform the experiment ramping to
different values of βmax and verify the result with the state
tomography procedure. The results are compared to the
Wigner functions found theoretically [Fig. 4(d)]. In the
simulations, the rotation angle and the drive conversion
factor β=V are the only fit parameters and are common to
all four data sets. As described above, we again assume a
short (td ¼ 2.5 ns) period of free evolution between the end
of state preparation and the start of our tomography, which
causes a small distortion (due to χ) of the reconstructed
state with respect to the eigenstate of the driven system. In
our experiment, we ramp the drive up to βmax ∼ χ, which is
necessary to see the emergence of the cat state. To a good

approximation, the generated states after the short free
evolution generated by Ĥ0 ¼ Δâ†â − χâ†â†â â =2 are

jψðαÞi ∝ e−iĤ0tdðjαi þ j − αiÞ; ð3Þ

with α ¼ 0.64, 0.88, 1.08, and 1.2 for the data shown in
Fig. 4(d). The largest of these corresponds to a 4jαj2 ¼ 5.8
photon Schrödinger’s cat state [22,28]. In the βmax ≫ χ
regime, the relevant eigenstate exponentially approaches
a cat state of size 8β=χ due to the double-well shape
of the system’s effective potential [Fig. 4(c)] (see
Appendix C for more details). For very large cat states,
imperfections in the tomography process that grow with
the number of photons in the analyzed state prevent its
faithful reconstruction. In comparison to other schemes
for cat-state generation [22,28–31], our method is sig-
nificantly more hardware efficient as it requires only a
resonator with one input and one output line for both state
generation and read-out.
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III. CONCLUSIONS AND OUTLOOK

The parametric oscillator is one of the paradigmatic
systems in quantum optics and has found an enormous
range of applications over the years. We have experi-
mentally demonstrated the few-photon quantum dynam-
ics of a parametric oscillator by introducing a large Kerr
nonlinearity in the microwave frequency regime. We
show that the system can adiabatically generate cat states
of five to six photons and have developed a tomography
method suited for the characterization of its state and
dynamics.
Our work demonstrates that nontrivial quantum states

can be engineered and characterized with nearly minimal
hardware complexity. The quantum coherence and hard-
ware efficiency of the system bode well for prospective
applications of these devices in emerging quantum infor-
mation processing and optimization architectures [8–12].
For instance, parametric preparation and manipulation of
cat states may be a convenient alternative to qubit-based
approaches [32] in continuous variable encodings of
quantum information. In the context of quantum optimi-
zation, networks of coupled KPOs could provide a useful
platform to study quantum counterparts of classical Ising
machines [8] and explore the possibility of speed-up in
quantum annealing algorithms [33].
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APPENDIX A: DEVICE FABRICATION

The device, shown in Fig. 5(a), was fabricated using a
five-mask lithography process on a 500-μm high-resistivity
(>10 kΩ · cm) Si substrate. First, the aluminum ground
planes and feed lines are defined in photolithography
using a liftoff process. Next, palladium marks are added
in preparation for aligning subsequent electron-beam
(e-beam) lithography masks. The SQUID array shown in
Fig. 5(b) is fabricated using a Dolan-bridge double-angle
technique for growing Al=AlOx=Al junctions via in situ
oxidation [34,35]. After junction growth, the resonator
capacitor is defined using e-beam lithography; narrow
wires and an unconventional capacitor design were chosen
to accommodate an array of nanomechanical resonators
introduced in later devices [36] and are not essential to the
design. Finally, a superconducting connection between the
SQUID array and capacitor leads is formed using a bandage
process [37]. An equivalent circuit diagram of the device is
shown in Fig. 5(c).

1. Device parameters

Table I gives the device parameters for the Kerr para-
metric oscillator. Here, the maximum resonator frequency
ωc;max is determined from a fit to the flux-bias tuning curve
ωcðΦeÞ ¼ ωc;max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij cosðπΦe=Φ0Þj
p

, where Φe is the exter-
nally applied magnetic flux and Φ0 is the flux quantum.
The maximum Josephson energy of each of the N ¼ 10
SQUIDs, denoted by EJ;max is determined from normal-
state resistance measurements. Together, EJ;max and ωc;max

are used to extract the resonator charging energy EC,
which closely matches predictions from finite-element
capacitance simulations. The resonator intrinsic and extrin-
sic decay rates are denoted as κi and κe, respectively.
Here, χ is the resonator frequency shift per photon,
determined from the peak-to-peak splitting in transient
PSD measurements of a coherent state. The maximum
parametric drive amplitude β=2π used in the experiment is
about 20 MHz. Larger β are possible but lead to large states
that cannot be faithfully reconstructed by the employed
tomography procedure due to the nonlinearity of the
system.

(a) (b) (c)

50 µm 5 µm

FIG. 5. (a) False colored micrograph of the Kerr parametric
oscillator. The coupling capacitor and flux bias line are shown in
blue and red, respectively. The capacitor shunting the SQUID
array is shaped in an unconventional way in order to accom-
modate an array of nanomechanical resonators introduced in later
devices [36]. (b) SEM image of the SQUID array. (c) Circuit
diagram of the Kerr parametric oscillator, showing the SQUID
array and shunting capacitor (black), coupling capacitor (blue)
and transmission line (grey), and flux bias line (red).

TABLE I. Device parameters for the Kerr parametric oscillator.

Parameter Value

N 10
ωc;max=2π 8.35 GHz
EC=h 1.053 GHz
EJ;max=h 82.79 GHz
κi=2π 200 kHz
κe=2π 900 kHz
χ=2π 17.3 MHz
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APPENDIX B: EXPERIMENTAL SETUP

1. Up-conversion board

We use two separate channels of a Tektronix series 5200
arbitrary waveform generator (AWG) to synthesize the
temporal profile of the pulses at an intermediate frequency
around 4 GHz and then further up-convert them to the
desired frequencies close to the first (for the displacement)
and second (for the parametric drive) harmonic of the
resonator frequency using single sideband mixers (Fig. 6).
Both pulses are then combined together and sent to the
sample through the flux line. Thanks to a weak but nonzero
direct coupling of the flux line to the resonator, it can
effectively double as a weakly coupled charge line, which

we can use instead of sending the displacement pulses
through the resonator input/output line. This way, we avoid
saturation of the measurement setup by the reflection of the
strong resonant pulse. The input/output line is not used for
driving the system, except in initial characterization mea-
surements of the resonator frequency using a vector net-
work analyzer.

2. Phase locking

For a state prepared by parametric driving, the orienta-
tion of the reconstructed quasiprobability distribution in
phase space is determined by the difference between the
phase ϕd of the tomography pulses and the phase ϕp=2 of
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the ωp=2 subharmonic of the parametric driving. These
phases in turn depend on the absolute phases of the up-
conversion local oscillators. Slow changes of this relative
phase due to phase drifts of the signal generators would
lead to gradually accumulating errors over long measure-
ments. To mitigate these errors, we monitor the phase over
the course of the measurement using a second down-
conversion board. Here, we somewhat unconventionally
feed both the parametric driving pulse at ωp and the
displacement pulse at ωd into the RF port of the mixer
while the LO port is 50-ohm terminated (Fig. 6), relying on
intermodulation to produce a signal at ωp − 2ωd. By
measuring this signal, we can determine the phase differ-
ence ϕ ¼ ϕp − 2ϕd, which needs to be constant to ensure
correct performance of the tomography measurements even
with very long acquisition times. We observe a slow drift of
ϕ of about 1 radian per hour, which we then eliminate by
measuring ϕ in approximately 1-minute intervals and
appropriately adjusting the phase of the up-conversion LO.

3. Down-conversion and digitization of the signal

The signal emitted by the resonator at about 7 GHz is
first amplified by a traveling-wave parametric amplifier
(TWPA) [2] and a low-noise high-electron-mobility tran-
sistor (HEMT) amplifier inside the cryostat. At room
temperature, it is further amplified and then converted
to an intermediate frequency of 125 MHz by a single-
sideband mixer (Fig. 6). The resulting signal is then
recorded by a digitizer card (AlazarTech ATS9350) with
a 12-bit resolution and a sampling rate of 500 MS=s. The
acquired data are first saved in the on-board memory buffer
and then transferred to GPU for real-time data processing.
In the transient PSD measurements, 1-μs waveforms are

collected and Fourier transformed, and their squared
absolute values are averaged. The waveform length is
chosen to be approximately 6=κ, long enough to make
sure the resonator has relaxed to its ground state with high
probability.

APPENDIX C: HAMILTONIAN OF A
PARAMETRIC OSCILLATOR

The Hamiltonian of the SQUID array resonator includ-
ing the parametric driving is

Ĥ=ℏ ¼ 4ECn̂2 − NEJ(ΦðtÞ) cos ϕ̂
N
; ðC1Þ

where n̂ is the number of Cooper pairs and ϕ̂ the overall
phase across the junction array. Here, EC is the resonator’s
charging energy, N is the number of SQUIDs in the array,
and EJ is the Josephson energy for a single SQUID in the
array, which depends on the external flux ΦðtÞ. The flux
is harmonically modulated around its mean value with a
small amplitude such that EJ(ΦðtÞ) can be approximated as

EJ þ δEJ cosωpt. After Taylor expanding cosðϕ̂=NÞ to
fourth order, we get

Ĥ=ℏ ¼ 4ECn̂2 − NEJ

�
1 −

1

2

�
ϕ̂

N

�2

þ 1

24

�
ϕ̂

N

�4

þ � � �
�

− NδEJ

�
1 −

1

2

�
ϕ̂

N

�2

þ � � �
�
cosωpt: ðC2Þ

The quadratic time-independent part of the Hamiltonian
can be diagonalized by defining

n̂ ¼ −in0ðâ − â†Þ;
ϕ̂ ¼ ϕ0ðâþ â†Þ; ðC3Þ

where n20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=32NEC

p
and ϕ2

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NEC=EJ

p
are the

zero-point fluctuations. We also drop c-valued terms in the
expression above and get

Ĥ=ℏ ¼ ωc
ð0Þâ†â −

EC

12N2
ðâþ â†Þ4

þ δEJωc
ð0Þ

4EJ
ðâþ â†Þ2 cosωpt; ðC4Þ

where ωc
ð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ECEJ=N
p

. We then transform the
Hamiltonian into a rotating frame at the frequency ωp=2
and perform a rotating-wave approximation, assuming that
jωc

ð0Þ − ωp=2j, EC=12N2, and δEJωc
ð0Þ=4EJ are all much

smaller than 2ωp. After normal ordering the resulting
expression, we obtain

Ĥ=ℏ ¼ Δâ†â −
χ

2
â†â†â âþβðâ2 þ â†2Þ; ðC5Þ

where we have defined the Kerr nonlinearity χ ¼ EC=N2,
the parametric drive strength β ¼ ωc

ð0ÞδEJ=8EJ, the
dressed resonator frequency ωc ¼ ωc

ð0Þ − χ, and the detun-
ing Δ ¼ ωc − ωp=2.

1. Effective potential

An intuitive way to understand some aspects of the
dynamics of this system is to define the following effective
potential [16] in phase space:

VðαÞ ¼ hαjĤjαi ¼ Δjαj2 − χ

2
jαj4 þ βðα2 þ α�2Þ

¼ jαj2
�
Δ −

χ

2
jαj2 þ 2β cos 2θ

�
; ðC6Þ

where α ¼ jαjeiθ. In the regime 2β > jΔj, the effective
potential has two symmetric local maxima (corresponding
to classical stationary points of the system) at jαj > 0 and
θ ∈ f0; πg. Therefore, in this case, the effective potential
has the shape of an inverted double well (Fig. 7). When its
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maxima �α are sufficiently well separated, i.e., β is large,
the potential can be approximated by a quadratic function
near �α. Therefore, the eigenstates of the system are close
to Fock states displaced by �α, as described in more
detail below.
Note that V is not the energy of the resonator in the lab

frame but rather an effective potential describing the system
in a rotating frame. In particular, stable equilibrium states of
the classical dynamics are still given by stationary points of
V but do not need to be local minima.

2. Eigenstates of the Hamiltonian

Understanding the structure of the eigenvalues and
eigenstates of the Hamiltonian at different β helps us see
how adiabatic ramping up of the drive amplitude can lead
to Schrödinger’s-cat state generation [16]. At β ¼ 0, the
eigenstates of the Hamiltonian are simply all Fock states
fjnig. As we increase β, two adjacent energy levels get
closer and eventually merge together at very large β
(Fig. 8). In the limit where β=χ ≫ 1, as suggested by the
effective potential argument above, the eigenstates of the
Hamiltonian form many two-dimensional nearly degen-
erate subspaces spanned by fD̂ð�αÞjnig for each n,
where �α ¼ � ffiffiffiffiffiffiffiffiffiffi

2β=χ
p

are the locations of the local
maxima. To show this result, we first note that the
coupling between states of the form D̂ðþαÞjni and
D̂ð−αÞjmi under the Hamiltonian Ĥ decreases exponen-
tially with jαj2, i.e.,

hmjD̂†ð−αÞĤ D̂ðαÞjni ∼ e−2α
2 ∀ m; n: ðC7Þ

Intuitively, this follows from the large separation of the
two potential wells. The Hilbert space therefore effec-
tively decomposes into two nearly decoupled subspaces
consisting of states localized around þα and −α. Next,
we observe that the Hamiltonian within each of these

subspaces is close to a harmonic oscillator. In other
words, D̂†ðαÞĤ D̂ðαÞ ≈ D̂†ð−αÞĤ D̂ð−αÞ ≈ −2χα2â†â in
the limit of α ≫ 1. Here, we have used the relation α ≈ffiffiffiffiffiffiffiffiffiffi
2β=χ

p
and only kept the highest-order terms in α.

This method confirms that displaced Fock states indeed
approximate the pairwise degenerate eigenstates of Ĥ in
the large α limit.
It follows from the adiabatic theorem that if we prepare

the system in the vacuum state and adiabatically increase β,
the system will follow the eigenstate and end up within the
corresponding degenerate subspace, as determined by
the order of eigenenergies of the Fock states at β ¼ 0,
which in turn depends on Δ and χ. For Δ < 0, j0i has the
highest eigenenergy at β ¼ 0 and evolves into fD̂ð�αÞj0ig
at large β. Since parametric driving preserves the parity of
the state, the final state is an even cat state jαi þ j − αi. The
case Δ > 0 is more complicated since j0i may not have the
highest eigenenergy at β ¼ 0 and can thus evolve into some
½D̂ðαÞ þ D̂ð−αÞ�jni, where n ≠ 0. Therefore, for cat-state
generation, having a negative detuning is helpful since that
gives a larger energy gap between j0i and all other higher
Fock states and thus allows a faster adiabatic tuning of β.
Driving with an appropriately chosen positive detuning or
nonadiabatic drive variations could, on the other hand, be
useful for generating displaced Fock states or their super-
positions [16].

APPENDIX D: DISPLACEMENT
PULSE CALIBRATION

The displacement pulses used in the experiments are
1-ns short pulses created by an arbitrary waveform

(a) (b)

FIG. 7. Illustration of the effective potential VðαÞ plot. (a) Po-
tential at β ¼ 0 (below threshold) where there is only one global
maximum. (b) The regime β ≫ χ (far above threshold) where the
potential has two symmetrically placed local maxima.
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FIG. 8. Eigenenergies of the Kerr parametric oscillator as a
function of the driving strength. The plot is made in the classical
limit χ ≪ Δ, where the oscillation threshold is at β ¼ jΔj=2. The
undriven eigenenergies are decreasing due to our use of a rotating
frame at ωp=2 > ωc. The pairs of neighboring energy levels
merge together and become nearly degenerate at large β where
the degenerate subspaces are spanned by displaced Fock states.
When we adiabatically increase β from 0 to above threshold, the
vacuum state will evolve into an even cat state since parametric
driving preserves parity.
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generator. To calibrate them, we apply pulses with
different amplitudes fVig to the vacuum state of the
resonator and measure the transient PSDs for the gen-
erated states. In order to simplify the analysis of the PSD
measurements, we preprocess the raw data fS̃ðω;ViÞg by
integrating over frequency bins centered around each of
the individual transition peaks, thus effectively reducing
the dimensionality of the analyzed data to n ×m, where
n is the number of bins and m the number of different
pulse amplitudes,

S̃jðViÞ ¼
Z
bin j

S̃ðω;ViÞdω: ðD1Þ

The number of bins that can be usefully analyzed is
limited by the increasing overlaps between the peaks
corresponding to higher transitions with larger linewidths.
When multiple transitions contribute to the same bin, the
assumptions we use in our model to arrive at Eq. (D9) fail,
and a more complex model needs to be used. In most of our
measurements, we use n ¼ 4 to 5 bins.
The calibration is done under the following assumptions:
(i) The state generated by a single pulse with voltage Vi

is a coherent state jαii.
(ii) αi depends linearly on the voltage Vi, i.e., αi ¼ kVi,

where k is a single fit parameter common to all
pulses.

(iii) The bin powers fS̃jðViÞg calculated from the mea-
sured PSDs are related to the theoretical predictions
fSjðjαiiÞg by a gain factor cj, which may, in
principle, be different for each bin j.

The calibration parameters k and c⃗ ¼ ðc1;…; cnÞ are
obtained by minimizing the loss function [Fig. 9(a)]

Lðk; c⃗Þ ¼
Xm
i¼1

Xn
j¼1

kS̃jðViÞ − cjSjðjkViiÞk2: ðD2Þ

For a given k, finding optimal c⃗ reduces to a simple linear
fitting problem, and the value of k is then calculated by
minimizing LðkÞ ¼ minc⃗Lðk; c⃗Þ.
To evaluate the loss function above, we need to calculate

the theoretically expected total power Sjðρ̂0Þ in each
transient PSD peak for a given state ρ̂0. The result
represented by Eq. (D9) is outlined in the main text, and
its full derivation is given below.

1. Analytical formula for the transient PSD

The transient PSD for an initial state ρ̂0 is given
formally by

Sðω; ρ̂0Þ ¼
ZZ∞

0

dtdt0κhâ†ðt0ÞâðtÞie−iωðt0−tÞ

¼ 2Re
ZZ∞

0

dtdτκhâ†ðtþ τÞâðtÞie−iωτ; ðD3Þ

which is normalized so that

1

2π

Z∞

−∞

dωSðω; ρ̂0Þ ¼ hâ†ð0Þâð0Þi: ðD4Þ

From the quantum regression theorem, we can rewrite the
two-time correlation function as

hâ†ðtþ τÞâðtÞi ¼ Trfâ†eL̂τâeL̂tρ̂0g; ðD5Þ

where L̂ is the Liouvillian for the nonlinear resonator with
the Hamiltonian

Ĥ ¼ −
χ

2
â†â†â â ðD6Þ

and energy decay rate κ.
By solving the master equation and Fourier transforming

the two-time correlation function, the analytical result for
the transient PSD is

(a)

(b)

FIG. 9. Schematic of pulse calibration and tomography.
(a) Pulse calibration is done by minimizing the loss function
Lðk; c⃗Þ, where k is the scaling factor that converts the voltage of
the pulse into the amplitude of displacement in phase space and c⃗
are the coefficients for the linear transformation that maps a
quantum state into its transient PSD. (b) The loss function for
state tomography contains the contributions from the distance
between measured and predicted transient PSDs for an unknown
state ρ̂ after each displacement.
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Sðω; ρ̂0Þ ¼ 2Re

�X∞
n¼0

pn

Xn−1
j¼0

1

ð1þ uÞn−j−1
Xn−j−1
k¼0

�
n − j − 1

k

�
uk

iðωþ kχÞ þ 2ðkþ 1Þκ=2
�
; ðD7Þ

where u ¼ iχ=κ and pn ¼ hnjρ̂0jni. Notably, Sðω; ρ̂0Þ
depends only on the diagonal part of ρ̂0, and this depend-
ence is linear.
Our system satisfies juj ¼ χ=κ ≫ 1. In this regime, the

transient PSD takes the form of a sum of relatively well-
separated peaks. The last equation can be approximated as

Sðω; ρ̂0Þ ≈
X∞
n¼0

pn

Xn−1
j¼0

ð2jþ 1Þκ
ðωþ jχÞ2 þ ½ð2jþ 1Þκ=2�2 ; ðD8Þ

where the transient PSD is decomposed into a sum of
Lorentzians with different linewidths and different center
frequencies corresponding to the different peaks we mea-
sured. Therefore, the total power in the jth peak is expected
to be

Sjðρ̂0Þ ¼
X∞
n¼j

hnjρ̂0jni ¼ 1 −
Xj−1
n¼0

hnjρ̂0jni: ðD9Þ

APPENDIX E: STATE TOMOGRAPHY

To reconstruct an unknown quantum state ρ̂, we displace
it in phase space [Figs. 3(a)–3(b)] using short calibrated
pulses with complex voltages fVig (including phase) and
then measure the transient PSDs and calculate the corre-
sponding integrated powers S̃jðViÞ for each of the bins j ¼
1;…; n after each displacement i ¼ 1;…; m. The density

matrix ρ̂ can be estimated by minimizing the difference
between the predicted transient PSDs and the measured
ones, which is expressed by the loss function [Fig. 9(b)]

Lðρ̂Þ ¼
Xm
i¼1

Xn
j¼1

kS̃jðViÞ − cjSjðD̂ðkViÞρ̂D̂†ðkViÞÞk ðE1Þ

under the linear constraint Trðρ̂Þ ¼ 1 and under the con-
dition that ρ̂ is positive semidefinite. Notice that both the
displacement and the map from a density matrix to a
transient PSD are linear transformations, and therefore this
minimization problem is convex and can be efficiently
solved by the MATLAB package CVX [38,39].

1. Parity constraint

The form of the master equation of the parametrically
driven system implies that all states that can be generated
from a vacuum state are mixtures of states with even and
odd parity. To see this, we only need to observe that the
Hamiltonian conserves parity and the collapse operatorffiffiffi
κ

p
â flips the parity of a state.
When reconstructing states prepared by parametric

driving, we use this condition as an additional constraint
on the unknown density matrix ρ̂, requiring that

P̂ ρ̂ P̂† ¼ ρ̂; ðE2Þ

where P̂ ¼ eiπâ
†â is the parity operator. We justify this

assumption by verifying the corresponding symmetry of
the transient PSDs measured in the tomography process
under a rotation of the applied displacement by π. For a
state ρ̂ satisfying Eq. (E2), we expect that S̃ðω;þαÞ ¼
S̃ðω;−αÞ, and we check this by plotting the difference
S̃ðω;þαÞ − S̃ðω;−αÞ and observing that it is negligible
when compared with the PSDs S̃ðω; αÞ themselves
(Fig. 10).

APPENDIX F: DATA FITTING

Some parameters of the system such as its nonlinearity χ
and linewidth κ do not change significantly among different
experiments, and we therefore assume constant values,
which are obtained from initial characterization measure-
ments. Other parameters like the detuning Δ and the
parametric driving amplitude β vary between experiments,
and therefore their values are determined separately in each
instance, either directly from the settings of the experiment
or by fitting.

(a) (b)

(c) (d)
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FIG. 10. Justification of the parity constraint for tomography
of parametrically prepared states. (a) Raw data fS̃ðω; αÞg of
[Fig. 4(b), left], including transient PSDs for all displacements α.
(b) The difference of the raw data under parity transformation
fS̃ðω;þαÞ − S̃ðω;−αÞg. Panels (c) and (d) are the same as panels
(a) and (b) but for the tomography data set in [Fig. 4(b), right].
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The nonlinearity χ=2π ¼ 17.3 MHz was calculated from
transient PSD measurements as the mean spacing between
adjacent peaks. To fit the time evolution of the photon
number [Fig. 4(a)], we introduce the detuning Δ, the
linewidth κ, and the drive conversion factor β=V that
relates the voltage amplitude V applied to the flux line
to the parametric driving amplitude β as fit parameters; we
obtain Δ=2π ¼ 24.6 MHz and κ=2π ¼ 1.1 MHz by min-
imizing the L2 distance between the simulation results and
the measured data. The value of Δ=2π found by fitting is
very close to the value 24 MHz set in the experiment, and
the small difference is likely due to slow magnetic flux
noise, which causes variations in the resonator frequency.
The linewidth is also consistent with direct VNA measure-
ments, which give values around 1 MHz, slightly depend-
ing on the resonator frequency. Since none of the results
in this work is very sensitive to the exact value of the
linewidth, we fix κ=2π to be 1.1 MHz in all subsequent
theory fits.
The process of fitting the steady-state mean photon

number n̄ [Fig. 2(c)] is similar to the case of the time-
dependent n̄ measurement described above [Fig. 4(a)]
except that κ is fixed and the detuning resulting in the
best fit is Δ=2π ¼ 25.3 MHz. For fitting the PSDs at a
steady state [Fig. 2(d)], we fix Δ=2π to the value 11.2 MHz
set in the experiment. The only fit parameter is the drive
conversion factor β=V.
The tomography measurement of the freely evolving

state [Fig. 3(d)] has two fit parameters: the size and phase
of the coherent state at τ ¼ 0. In principle, the observed
phase θ of the state should be easily predictable since it
only depends on the relative phase between the preparation
pulse and the tomography pulse, both of which are
generated by the AWG and proceed along the same path
through the up-conversion chain. A calculation based on
the experimental settings used gives a predicted phase of
θ ≈ 1.19π. The size of the state α can also be estimated
from the pulse calibration parameter k, which gives α ≈ 1.5.
Treating both θ and α as unknown fit parameters, we get
θ ≈ 1.24π and α ≈ 1.0. In this fitting, to achieve a simulta-
neous match to the different states at each of the different
evolution times τ, we choose the objective function to be
the geometric mean of the fidelities between each measured
state and the corresponding theoretical prediction.
For states prepared by parametric driving, their phase θ

depends on the absolute phase of the signal generator.
Through the feedback loop described in Appendix B 2, we
stabilize the phase over the measurement time at a fixed
value. This value, in principle, depends on the frequency
of the signal in a complex way due to the variation of the
system’s S-parameters with frequency. Since the different
tomography measurements are mostly performed at differ-
ent resonator frequencies, we treat the phase of the state θ at
each of these frequencies as a fit parameter. Another fit
parameter we introduce for these measurements is the

possible small time interval td of free evolution between the
preparation pulse and the tomography pulses. This param-
eter is to account for a potential delay between the two
pulses that are generated by different channels of the AWG
and processed by separate up-conversion boards.
For the tomography measurements of the steady state

under parametric driving [Fig. 4(b), right], both the detun-
ing Δ and the parametric driving amplitude β have been
fixed through fitting to the time evolution of the photon
number [Fig. 4(a)]. Therefore, the only remaining fit
parameters are the phase of the state and the delay time
td. By maximizing the fidelity between the reconstructed
density matrix and the simulation result, we get td ¼
2.5 ns, which is then kept fixed for all other tomography
measurements with parametric driving. Consequently, for
the transient state at 20 ns [Fig. 4(b), left], the only fit
parameter is its phase θ.
For the tomography measurements of the adiabatically

prepared cat states, the phase θ is again unknown but
should be the same for all four states. Therefore, the phase θ
and the drive conversion factor β=V are the only fit
parameters for all four data sets. We again assume that
the final state is distorted by a short period of free evolution
whose length we fix at td ¼ 2.5 ns based on previous
measurements.
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